

Created By:

Dr Sheherbano Yahya Head of Department

Lab Manual Physiology Lab

Table of Contents

Physiology L	ab
Description .	4
Aims and C	Objectives4
Faculty Resp	oonsible for Course Conduction 5
Fauinment c	of Practical Lab 6
Model	1:
	6
Microscop	e6
Model	2:
	6
	noglobinometer 6
Model	
	s. 7
Westergen	`s Tube9r
7	
Model	_
	7
Sphygmom	anometer8
Model 5	8
	ne8
Model	
	9
Peak Expira	atory Flowmeter
MODEL 7	9
Perimetry .	9
Model 8	10
CPR	10
Model 9	10
Snellen`s C	hart10
MODEL 10	11
	oscone

The skills lab of Women Dental College was constructed in 2019; the purpose of the skills laboratory was to support the acquisition of clinical skills through hands-on training within a non-threatening environment.

Learners commonly practice the procedural skills' psychomotor component under the trainers' instruction, who have previously demonstrated the relevant skill. Subsequently, the skills are then performed by the learners themselves under supervision.

Aims and Objectives:

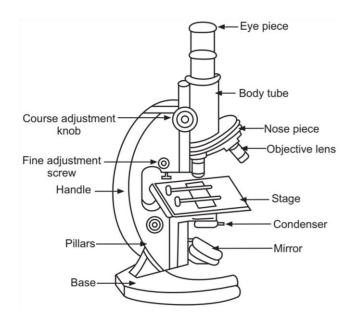
The core aim of the skills lab is to

- 1. Help undergraduate students and health professionals learn the correct steps and sequence for performing a skill.
- 2. It also helps to measure students' progress in learning as they gain confidence in the skill.
- 3. Ensure patient safety.
- 4. Using high-fidelity simulation devices such as partial-task trainers or full-body mannequins to practice and acquire psychomotor skills.

The mission of the laboratory is to promote clinical competence, ensure patient safety and enhance the skills of medical students (both undergraduate and postgraduate) during their training.

Faculty Responsible for Course Conduction:

SR. NO	FACULTY	DEPARTMENT	DESIGNATION
1	DR. SHEHRBANO YAHYA	PHYSIOLOGY	HOD
2	DR. KAYENAT IHSAN	PHYSIOLOGY	LECTURER
3	DR. AIMEN KHAN	PHYSIOLOGY	LECTURER


4	MR. SHUJA	PHYSIOLOGY	LAB STAFF
5	SHAHZANA BANO	PHYSIOLOGY	LAB STAFF
6	SHAHABIA BANO	PHYSIOLOGY	LAB STAFF

Equipment of Practical Lab

Model 1:

Model name: Microscope

A light microscope is a tool that can identify, observe and magnify objects by transmitting light through a string of lenses. It is one of the most used tools in the field of biology. Microscopes are rightly used in medicine, microbiology.

Model 2:

Model name: Sahli's Hemoglobinometer

Sahli's method also called the acid hematin method, is the visual comparator method for the estimation of hemoglobin. As visual comparison may lead to unacceptable imprecision and accuracy, this method is not recommended nowadays, and the use of spectrophotometric methods like the Cyanmethemoglobin method is preferred it.

Principle:

When the blood is added t. dilute hydrochloric acid (HCl), hemoglobin present in the RBCs is converted into brown-colored acid hematin. The acid hematin solution is further diluted until its color matches exactly with the permanent standard brown glass compared by direct vision.

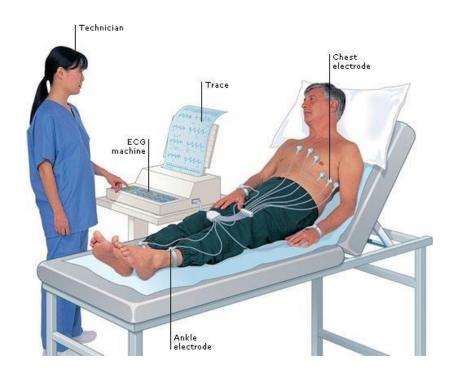
Model 3

Westergen's Tube

The Westergren method measures the distance (in millimeters) at which red blood cells in anticoagulated whole blood fall to the bottom of a standardized, upright, elongated tube over one hour due to the influence of gravity. The tube used for the test is called the Westergren tube.

Model 4:

Model name: Sphygmomanometer


Description:

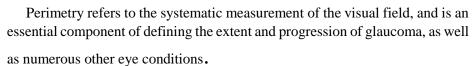
An instrument for measuring blood pressure, typically consisting of an inflatable rubber cuff that is applied to the arm and connected to a column of mercury next to a graduated scale, enabling the determination of systolic and diastolic blood pressure by increasing and gradually releasing the pressure in the cuff.

Model 5 ECG Machine

The standard ECG machine consists of

- 1. Output device
- 2. Electrodes; 6 unipolar chest leads and 3 bipolar limb leads
- **3.** Connecting wires

Model 6

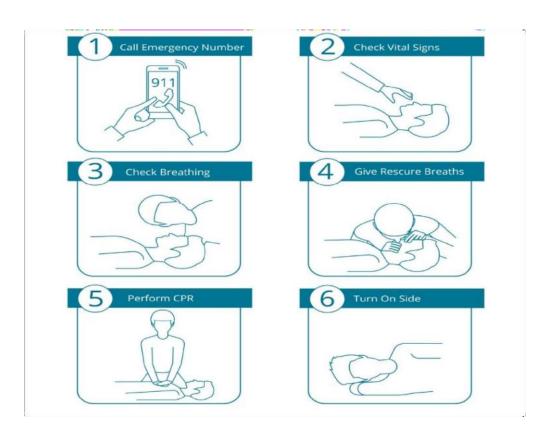

Peak Expiratory Flowmeter

Peak expiratory flowmeter is used to measures degree of airway obstruction

It consists of Numbered scale Mouthpiece

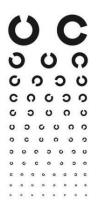
MODEL 7

PERIMETRY

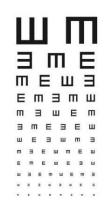


Model 8 CPR

CPR stands for cardiopulmonary resuscitation. It is an emergency life-saving procedure that is done when someone's breathing or heartbeat has stopped. This may happen after a medical emergency, such as an electric shock, heart attack, or drowning.


MODEL 9
Snellen's Chart

A Snellen chart is an eye chart that can be used to measure visual acuity.


Model 10

An ophthalmoscope and different small of the eyeball. or sit in a semi-

Ophthalmoscope

is about the size of a flashlight. It has a light lens that allow the provider to view the back Indirect ophthalmoscopy. You will either lie reclined position.

Curriculum for Undergraduate students:

S.No	Class	Topic	Learning Outcomes	Teaching	Mode	Assessment
				Hours	of	Tools
					Teaching	
1	1st	Microscope				

	Year BDS		 Identify parts of microscope. Demonstrate operation of microscope. Describe the method of focusing slide at different magnifications. Follow the specified norms of lab work. 	2	Demonstration and practical	OSPE Viva
2			 Hemoglobin determination Assist in phlebotomy while practicing aseptic procedure. Determine the hemoglobin (Hb) concentration in the given sample Estimation of hemoglobin by Sahli's method Determination of packed cell volume 	2	Demonstration	OSPE Viva
3		Blood cells	Identify and describe various blood cells under microscope.	2 hrs.	Demonstration	OSPE VIVA
4		RBC Count	Determine the red blood cell (RBC) count in the given sample and calculate RBC indices	2 hrs.	Demonstration	OSPE Viva

5	TLC Count	•	Determine the total leukocyte count (TLC) in the given sample	2 hrs.	Demonstration followed by discussion	OSPE Viva
6	DLC	•	Determine the differential leukocyte count (DLC) in the given sample	2 hrs.	Demonstration followed by discussion	OSPE Viva

7	Clotting time	Determine the clotting time	2 hrs.	Demonstration	OSPE Viva
8	Bleeding Time	Determine the bleeding time	2 hrs.	Demonstration followed by discussion	OSPE/ VIVA
8	Hematocrit Determination	Determine the hematocrit in the given sample	2 hrs.	Demonstration followed by practical	OSPE Viva
9	Blood grouping	Determine the O-A-B and Rh blood group in the given sample	2 hrs.	Demonstration followed by practical	OSPE
10	Blood smear preparation	Prepare blood smear by thu mb prick method.	2 hrs.	Demonstration followed by practical	OSPE VIVA
11	ESR	Determinati on of ESR in	2 hrs.	Demonstration	OSPE Viva

		a given blood sample		followed by practical	
12	Blood pressure	Measureme nt of blood pressure	2 hrs.	Demonstration followed by practical	OSPE and VIVA
13	Arterial pulses	• Examinatio n of the arterial pulses e.g. Radial, Brachial, Carotid, Femoral and popliteal	2 hrs.	Demonstration followed by practical	OSPE and Viva
14	Apex beat	Examinatio n and location of apex beat	2 hrs.	Demonstration followed by practical	OSPE and Viva
15	Heart sounds	Auscultate areas of the heart sounds.First heart sound 2nd heart sound	2 hrs.	Demonstration followed by practical	OSPE and Viva
16	JVP	Measureme nt of Jugular Venous Pulse	2 hrs.	Demonstration followed by practical	OSPE and Viva
17	ECG	Interpretatio n and recording of ECG	2 hrs.	Demonstration followed by practical	OSPE and Viva
18	PEFR		2 hrs.	Demonstration	OSPE and Viva

	•	Measureme nt of Peak expiratory flow rate		followed by practical	
19	Examination of olfactory nerve	Examine a standardize d patient for cranial nerve I, examination of sense of smell	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
20	Examination of Cranial Nerves III, IV and VI	Examine a standardize d patient for extraocular muscles movement.[oculomotor, Abducens and Trochlear nerves]	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
21	Examination of trigeminal cranial nerve [v]	Examine a standardize d patient for cranial nerve v Trigeminal N,	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
22	Examination of facial nerve [vii]	Examine a standardize d patient for cranial nerve vii for taste[ant 2/3rd and symmetry of face	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva

23	Examination of vestibular cochlear nerve[viii]	Examine a standardize d patient cranial nerve [viii] for air and bone conduction by using tuning fork	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
24	Examination of glossopharyngea l nerve[ix]	Examine a standard patient for position of uvula, Gag and swallowing reflex	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
25	Examination of Vagus nerve[X]	Examine a standardize d patient for Cranial nerves X	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
26	Examination of Accessory Cranial nerves [XI]	Examine a standardize d patient for strength and paralysis of sternocleido mastoids and trapezius Cranial nerves XI,	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
27	hypoglossal nerve[xii]	Examine a standardized patient for position and movement of tongue.	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
28		Examine a standardized patient for visual acuity and errors of refraction	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva

29	Perimetry	Examine a standardized patient for visual field function	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
30	Tuning fork test	Examine a standardized patient for hearing loss with tuning fork (Weber and Rinne`s and schawabach tests)	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
31	Fundoscopy	Examine a standardized patient fundus in dark room	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
32	Examination of superficial reflexes	Examine a standardized patient for superficial reflexes	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
32	Examination of deep tendon reflexes-1	fExamine a standardized patient for deep tendon reflexes of lower limbs	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
33	Examination of deep tendon reflexes-2	fExamine a standardized patient for deep tendon reflexes of upper limbs	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva
34	Recording of body temperature	Recording of temperature by using Celsius and Fahrenheit scale thermometer	2 hours	Demonstration followed by practical performance and discussion	OSPE and Viva

Standard Operating Procedures (SOPs):

The following guidelines for the smooth running of Skills and Practical's are presented and the users are expected to follow these.

- Students are strictly prohibited to write anything on the apparatus, tables, walls etc.
- After using them in the skills lab, needles and blades should be disposed of in the closest sharps container rather than being reused.
- Doors should be firmly closed and locked while leaving the lab area, and lights should be turned off.
- Students are not to be left unattended by faculty or staff at any time.
- In case any faculty members or students get hurt, a first aid kit will always be on hand in the skills lab.
- No food and drinks will be allowed in practical lab.
- Unauthorized persons are not allowed in the labs at any time.